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Abstract. We show how the exact evolution and nonadiabatic Hannay’s angle of Grassmannian classi-
cal mechanics of spin one half in a varying external magnetic field is associated with the evolution of
Grassmannian invariant-angle coherent states.
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Considering the evolution of a quantum system whose
Hamiltonian H(t) depends explicitly on time through a

set of parameters
→
X (t), Berry [1] has shown that, when

→
X (t) describes adiabatically a loop C in parameters space,
an eigenstate of the Hamiltonian develops, besides an ex-
pected dynamical phase, a geometrical phase γn(C) which
depends essentially on the closed path C which has been
followed in parameters space. Removing the adiabatic
hypothesis, Aharonov and Anandan [2] have generalized
Berry’s result and shown that such a geometrical phase
may appear for any state which is cyclic with respect to
some evolution. (Cyclicity means that the state returns to
itself, after some time up to a phase; in Berry’s approach,
the adiabatic hypothesis ensures the cyclicity of the eigen-
states of H(t) after one loop). Therefore, in the study of
quantum nonadiabatic holonomy effects, a complete set
of cyclic states play the same basic role as the Hamilto-
nian eigenvectors in the adiabatic case. A natural (but not
unique) way to get such a basis of cyclic states is to con-
sider the eigenvectors of a Hermitian periodic invariant
I(t) defined by

∂I

∂t
= ı~[I,H] . (1)

Indeed, any eigenstate |n, 0〉 (relative to the time-inde-
pendent eigenvalue λn) of an invariant operator I(0) at
time zero evolves continuously into the corresponding
eigenstate |n, t〉 of the invariant operator I(t) at time t [3],
exactly as an eigenstate of the Hamiltonian does when the
evolution is adiabatic. For this reason, invariant theory
takes an important place in recent works on nonadiabatic
geometric phases [4–9].

The classical analog of Berry’s phase is Hannay’s an-
gle [10]. According to the classical adiabatic theorem, any
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trajectory in phase space of the classical integrable Hamil-
tonian at time zero evolves into a trajectory of the Hamil-
tonian at time t with the same action. Hannay [10] has
shown that when the adiabatic excursion takes place on
a closed path in the space of parameters, an extra shift
analogous to Berry’s phase is realized in the angle vari-
ables. This extra angle depends on the geometry of the
parameter space circuit and on the conserved actions. It
can be viewed as a semiclassical limit of Berry’s phase [11].
A geometrical angle can be defined on a constant-action
surface for a cyclic evolution [12,13] in a classical nona-
diabatic integrable Hamiltonian system; this angle is the
classical counterpart of the geometrical phase [2], so it is
called the nonadiabatic Hannay’s angle.

For a quantum Hamiltonian with integrable classical
limit in ordinary phase space, the quantum-classical cor-
respondence is well understood for action-angle coherent
states [14]. In the classical limit such a quantum Hamil-
tonian possesses an infinite number of energy levels. How-
ever, also Hamiltonians with a finite number of levels are
of interest. A well-studied system is the two-level system
of a spin-(1/2) magnetic dipole coupled in a slowly varying
external magnetic field. This system can be written as a
classical model by means of Grassmann variables [15,16].
The corresponding classical adiabatic holonomy and Han-
nay’s angle were investigated by Gozzi and Thacker [17].
Using fermionic coherent states and canonical transforma-
tion, Abe [18] gives an alternative derivation of the result
obtained in reference [17]. Hannay’s angle was proved to
be simply related to Berry’s phases relative to suitable
action-angle coherent states [19].

The important point which we emphasise in this paper
is that the nonadiabatic Hannay’s angle of Grassmanian
classical mechanics [20] is associated with the evolution of
Grassmannian invariant-angle coherent states.
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To be explicit, we start with the exact classical evo-
lution and nonadiabatic Hannay’s angle of a Grassmann
spin in a time-dependent magnetic field. As shown in ref-
erence [17], the Hamiltonian of a Grassmann spin

H = −
i

2
εkijBk(t)ξiξj , (2)

involves 3 real Grassmann variables ξi with Grassmann
algebra ξiξj + ξjξi = 0. It leads to Pauli spin in the time-
dependent magnetic field

H =
1

2

→
B (t)

→
σ (3)

when the anticommuting three-vectors
→
ξ are transformed

to the Pauli matrix after the quantization ξ̂ =
→
σ /
√

2.
It is easy to show that the system described by the

Hamiltonian (2) admits a time-dependent invariant

I(t) = −
i

2
εkijRk(t)ξiξj =

−
i

4

{
(r2 + r∗2)ε1lm − i(r

2 − r∗2)ε2lm

+
2

B+

(
irṙ +

B3r
2

2

)
ε3lm

}
ξlξm (4)

satisfying the relation

∂I

∂t
= −{H(

→
ξ ), I(

→
ξ )}PB ≡ −iH(

→
ξ )
←−
∂j .
−→
∂j I(

→
ξ ) , (5)

where
←−
∂ j and

−→
∂ j are right and left derivatives with re-

spect to ξj , r(t) is the solution of the following auxiliary
equation:

d

dt

(
ṙ

B+

)
+
r

4

[
B−B++B3

2

B+
− 2i

d

dt

(
B3

B+

)]
−
B+

r3
=0, (6)

B± = B1±iB2 and r∗ denotes the complex conjugate of r.
When expressed in terms of its normal modes, the in-

variant I(t) takes the form

I = −
1

2
ζ∗1ζ1 +

1

2
ζ∗2ζ2 = −ζ∗1ζ1 = ζ∗2 ζ2 , (7)

where ζ1 and ζ2 are complex conjugates of each other:
ζ2 = ζ∗1 , while ζ3 = ζ∗3 is real. The complex normal co-
ordinates ζi are deduced from ξj ’s through the unitary
transformation ζi = (S+)ijξj (i, j = 1, 2, 3) which diago-
nalizes the invariant I(t). The angle variables of this classi-
cal system are θa = −Argζa (a = 1, 2) and are determined
by Cherbal [20] using a classical time-dependent canoni-
cal transformation. The geometrical part or nonadiabatic
Hannay’s angle appears in the angle variables θa(t) after
a cyclic evolution.

Since we shall be interested in this paper by a purely
quantum interpretation of an exact solution and a nona-
diabatic geometrical angle associated with Grassmannian
classical spin, let us recall how these angles appear in the

action-angle coherent states when dealing with ordinary
(commutative) classical mechanics. The action-angle co-
herent states are defined in the classical approximation,
that is for ~ small with respect to the classical action, in a
way which resembles the definition of the usual (harmonic
oscillator) coherent states:

|α,
→
X (t)〉 = e−|α|

2/2
∞∑
n=0

αn
√
n!
|n,
→
X (t)〉 , (8)

where |n,
→
X (t)〉 are eingenstates of the Hamiltonian

H(
→
X (t)) which depend on parameters

→
X (t) slowly vary-

ing in time. We call them “action-angle” coherent states
because the complex number α can be related to the clas-
sical action-angle variables by α =

√
I/~ e−iθ. Indeed,

when the parameters
→
X are fixed, the quantum evolution

of |α,
→
X〉 amounts up to a global unessential phase factor,

to keep the modulus of α constant and to change θ into

θ+ ∂EN
∂N

t. This allows the identification of θ with the clas-
sical angle variable. Moreover, in the classical limit (~ goes
to zero, |α| goes to infinity with the product |α|2~ remain-
ing finite) the sum (8) over n is peaked around N = |α|2

and the relation I = |α|2~ is nothing but the correspon-
dence principle. When the parameters vary slowly with

time each eigenfunction |n,
→
X (t)〉 acquires the extra phase

γBN(t) inducing a change of the coherent state such that
the modulus of α remains constant while its argument θ

becomes θ−∂γ
B
N

∂N
(t). Then θH

I (t) = −∂γ
B
N

∂N
(t) defines the cor-

responding Hannay’s angle in classical mechanics. We have
exemplified the quantum-classical correspondence at the
level of action-angle coherent states. Let us note that the
mean value of the quantum Hamiltonian in these states

〈α,
→
X (t)|H(

→
X (t))|α,

→
X (t)〉 = Hc(I,

→
X (t)) (9)

can be identified with the classical Hamiltonian Hc (which
is a function of the action only).

Let us now present the Grassmannian invariant-angle
coherent-state approach of this model. We shall find suit-
able Grassmannian (or fermionic) invariant-angle coher-
ent states |ζ, t〉 which have the property of the state

|α,
→
X (t)〉: that every change in the phase of quantum

invariant’s eigenstates |n, t〉 → eiφn |n, t〉 induces a change
ζ → ζeiθ of the arguments of the parameter of Grass-
mannian invariant-angle coherent states, and the classical
fermionic invariants are precisely the expectation value
of the corresponding quantum invariants. The difference
with the commutative case is that now there is no need
of a classical limit n → ∞ and ~ → 0. (We therefore set
~ = 1 in the following.)

Let us express the quantum invariant I =
→
R (t)

→
σ /2

corresponding to the classical one (4) in terms of fermionic
operators b(t) which annihilate the lowest eigenstate |0, t〉
of I and b+(t) which brings this state onto the other eigen-
state |1, t〉 as

I(t) =
(
b+(t) b(t) − 1/2

)
. (10)
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 b(t)

b+(t)
c(t)

 = U+

 b
b+

c

 =
1

2

 (1 +R3)r/r
∗ −(1−R3)r

∗/r −|r|2/
√

2
−(1−R3)r/r

∗ (1 +R3)r
∗/r −|r|2/

√
2

r2/
√

2 r∗2/
√

2 2R3

 b
b+

c

 , (11)

θD =

∫ t

0

dt′〈1, t′|
1

2
(B+(t′), B−(t′),

√
2B3(t

′))U(t′)

 b(t′)
b+(t′)
c(t′)

 |1, t′〉
−

∫ t

0

dt′〈0, t′|
1

2
(B+(t′), B−(t′),

√
2B3(t

′))U(t′)

 b(t′)
b+(t′)
c(t′)

 |0, t′〉 ; (16)

The time-dependent fermionic operators b(t) and b+(t)

are related to the operators ξ̂i via the time-dependent uni-
tary transformation U

see equation (11) above

where the operators b = (ξ̂1−iξ̂2)/
√

2, b+ = (ξ̂1+iξ̂2)/
√

2

and c = c+ = ξ̂3 satisfy the algebra

{b, b+}+ = {c, c}+ = 1 ,

{b, b}+ = {b, c}+ = 0 . (12)

(In the matrix notation, b+ = σ+ and b = σ− with
σ± = (σ1 ± iσ2)/2, and the Clifford number c is σ3/

√
2.)

Therefore, the time-dependent operators b(t), b+(t) and
c(t) obviously satisfy the algebra isomorphic to equa-
tion (12). The initial Grassmannian invariant-angle co-
herent states are taken to be

|ζ(0), 0〉 = exp

[
−

1

2
ζ∗(0)ζ(0)

] (
|0, 0〉 − ζ(0)|1, 0〉

)
(13)

and are eigenstates of b(0) with eigenvalue ζ(0), and they
are created from the ground state |0, 0〉 by the unitary
operator exp (−[ζ(0)b+(0)+ζ∗(0)b(0)])|0, 0〉. According to
the Lewis-Riesenfeld theory, one can immediately see that
the evolution

|0, 0〉 → eiφ0(t) |0, t〉

and

|1, 0〉 → eiφ1(t) |1, t〉 (14)

of the eigenstates of I(0) induces the evolution of Grass-
mannian invariant-angle coherent states

|ζ(0), 0〉 → eiφ0(t) |ζ(0) ei{φ1(t)−φ0(t)}, t〉 = |ζ(t), t〉 (15)

i.e. the argument of parameter ζ changes in the evolu-
tion. As is well known, the global phases φn(t) (n = 0, 1)

contain a dynamical part φD
n = −

∫ t
0
〈n, t′|H(t′)|n, t′〉dt′

and a geometrical one φG
n = i

∫ t
0
〈n, t′|∂/∂t′|n, t〉dt′. The

main point of this elementary result is that the argu-
ment φ1(t) − φ0(t) of the parameter ζ(t) contain a dy-
namical part φD

1 − φ
D
0 and a geometrical part φG

1 − φ
G
0 .

This geometrical part is nothing but (minus) Hannay’s
angle [10] in a cyclic evolution. The second key property
Ic = 〈ζ(t), t|I(t)|ζ(t), t〉 + 1/2 = ζ∗(0)ζ(0) is an immedi-
ate consequence of (10) and (15). It allows the identifi-
cation of the ζ’s entering into the definition of |ζ, t〉 with
the classical normal modes and justifies the Grassmannian
invariant-angle coherent-states denomination of |ζ, t〉: ζ∗ζ
is the classical invariant variable.

Let us embark on the calculation of these angles. From
equations (3) and (11), we have

see equation (16) above

we see that only the term proportional to c(t) contributes
to the calculation of the dynamical angle, which yields

θD =

∫ t

0

→
R (t′) ·

→
B (t′)dt′ . (17)

Using equation (11), the ∂b+/∂t can be expressed as

∂b+

∂t
= R3

(
ṙ∗

r∗
−
ṙ

r

)
b+(t)

+

(
Ṙ3√
2|r|2

+
1

4
√

2

(
rṙ∗ − r∗ṙ

))
c(t) , (18)

so that

θG = −i

∫ t

0

dt′
(
〈1, t′|

∂

∂t′
|1, t〉−〈0, t′|

∂

∂t′
|0, t〉

)
=

−i

∫ t

0

dt′〈1, t′|
∂b+

∂t′
|0, t〉=−i

∫ t

0

dt′R3

(
ṙ∗

r∗
−
ṙ

r

)
. (19)

For a cyclic evolution of duration T the nonadiabatic Han-
nay’s angle is

θG = −i

∮
C
R3

(
dr∗

r∗
−

dr

r

)
. (20)
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We note here that r must return to its original value, and
indeed there do exist such solutions to equation (6). These
above results agree with those obtained by Cherbal [20] in
the classical Grassmannian case and by Maamache [21] for
the classical bosonic model of spin one half.

In the example we studied there is only one angle vari-
able θ1(t) = φ1(t)− φ0(t) instead of two corresponding to
the classical normal modes. The reason is that the fun-
damental state |0, t〉 taken to be the “vacuum” is not left
invariant by the evolution. (We note that the second nor-
mal mode could be obtained if |1, t〉 has been chosen as
“vacuum”. This is done by interchanging the roles of b(t)
and b+(t); in this case we would obtain the second angle
θ0 = −θ1.) Although this approach has the attractive con-
sequence that Hannay’s angle appears as the difference of
two Berry’s phases, it has the major drawback of privi-
leging one of the two eigenstates and thus not allowing a
generalisation to the case N > 2 levels.
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